

https://canvas-project.eu

Cybersecurity Fundamentals

Dominik Herrmann, University of Bamberg

What will you learn in this video?

Why is cybersecurity challenging?

Who is attacking and what are their motives?

What are common **threats** to data and systems?

Why is cybersecurity challenging?

Who is attacking and what are their motives?

What are common **threats** to data and systems?

Why is cybersecurity challenging?

Cyberspace

virtual world consisting of networked systems that affect our lives **Complexity** quantity and diversity

Asymmetry attacking versus defending

Why is cybersecurity challenging?

Who is attacking and what are their motives?

What are common **threats** to data and systems?

Goal of cybersecurity: protecting assets

(hardware, software, data)

Information Security

Objective:

protect data and any information derived from its interpretation

data at rest vs. data in transit

Systems Security

Objective:

ensure that (computer) systems operate as designed

Information Security

Objective:

protect data and any information derived from its interpretation

data at rest vs. data in transit

Systems Security

Objective:

ensure that (computer) systems operate as designed

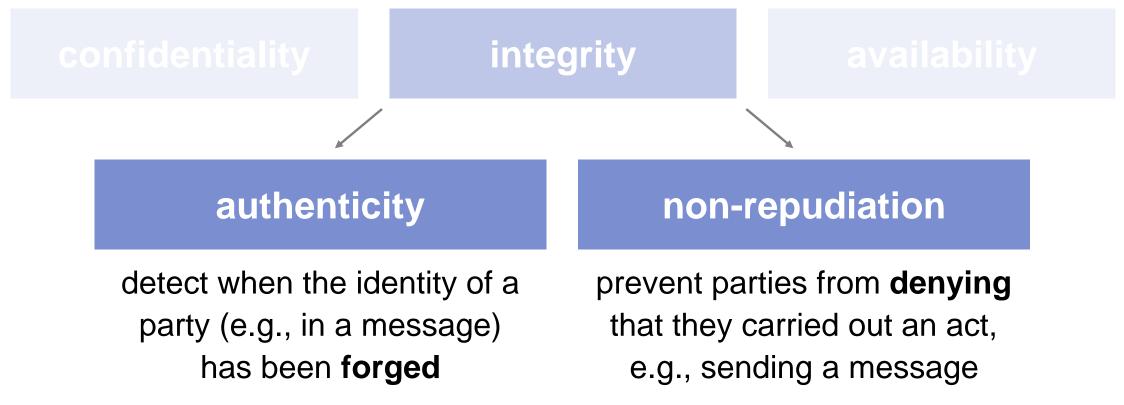
https://canvas-project.eu

Protection Goals in Information Security

confidentiality	integrity	availability
prevent unauthorized information gain	prevent or detect unauthorized modification	prevent unauthorized deletion or disruption
encryption	verification codes	backup
	(e.g., in online banking)	

https://canvas-project.eu

Who is *authorized*?


one authorized party

multipe authorized parties e.g., sender and receiver

https://canvas-project.eu

Sometimes security is about protecting the *identity*.

Information Security

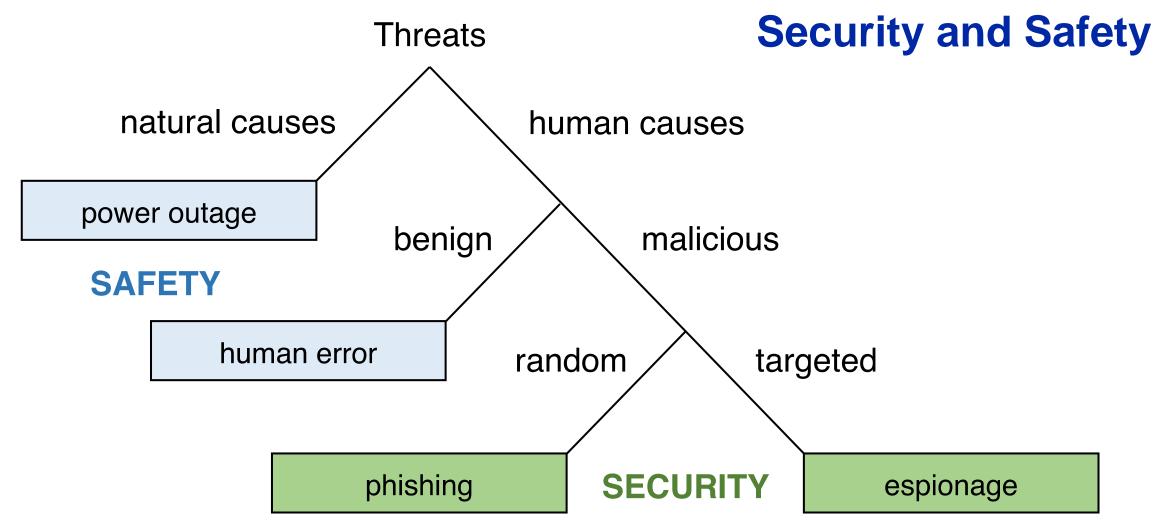
Objective:

protect data and any information derived from its interpretation

Systems Security

Objective:

ensure that (computer) systems operate as designed



https://canvas-project.eu

Systems Security: How to design secure systems?

confidentiality	integrity	availability
encrypting data	We rely on systems to operate properly.	
OR authentication in	Attackers may disable them or manipulate their operation.	
combination with access control	Especially relevant for cyber-physical systems , i.e., critical infrastructures that society relies on.	

https://canvas-project.eu

Source of many threats: bugs in software and hardware

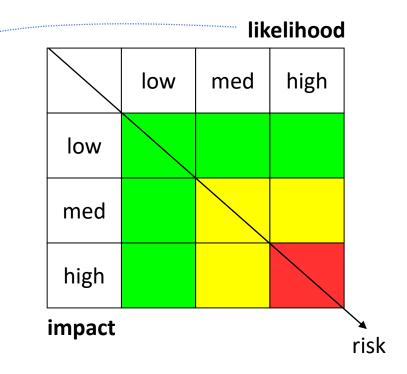
weakness

e.g., buffer overflow

vulnerability

e.g., CVE-2018-8392

MS JET Database Engine Remote Code Execution Vulnerability (possible due to a buffer overflow)


Common Weakness Enumeration https://cwe.mitre.org Common Vulnerabilities and Exposures https://cve.mitre.org

Time of creation: design, implementation, configuration, operation

Risk Management Perspective

Risk: Possibility that an attack causes damage. Severity is the product of likelihood and impact.

Why is cybersecurity challenging?

Who is attacking and what are their motives?

What are common threats to data and systems?

When does an attack happen?

working method

exposure

exploitability

motive

Different kinds of attackers and their motives

professionals

corporate spies

cyber criminals

insiders (including nation states the supply chain)

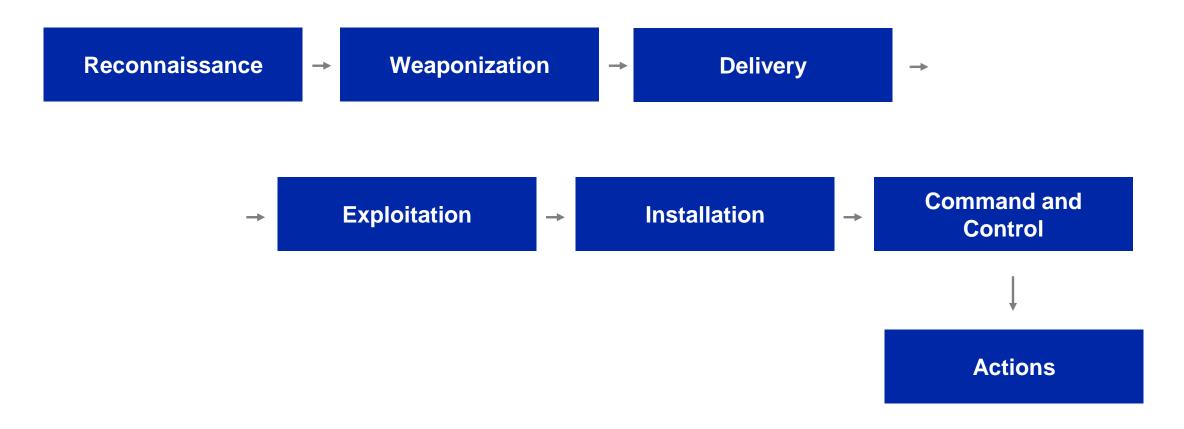
financial and political benefit

hobbyists

(script kiddies)

hacktivists

rogue hackers


money, fun, to further a cause

whitehats

https://canvas-project.eu

Typical stages of an intrusion: the Cyber Kill Chain

Why is cybersecurity challenging?

Who is attacking and what are their motives?

What are common **threats** to data and systems?

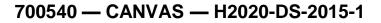
https://canvas-project.eu

Defensive measures come in two flavors

proactive measures

Prevention: ensure that attack is not possible by minimizing exposure and exploitability

Deterrence: increase the effort for the adversary to become unattractive


Deflection: redirect effort of attacker towards another target, e.g., by deploying honeypots

reactive measures

Detection: either in real time or post mortem (via intrusion detection systems or logs)

Mitigation: reduce the impact of an attack, e.g., via network segmentation

Recovery: fast recovery from attack, e.g., via offsite backups and emergency playbooks to navigate a crisis

... since 1975!

We have known fundamental security design principles

Continuous Improvement

because security is a process.

Least privilege, i.e., not more access rights than necessary.

Defense in depth instead of single points of failures.

Open design instead of security by obscurity.

A chain of control limited to trustworthy code and inputs.

Deny by default, i.e., access has to be granted explicitly as needed.

Transitive trust: If A trusts B and B trusts C, A effectively also trusts C.

Trust but verify the identity of other users and components.

Separation of duty: Split up critical tasks to reduce their complexity.

Least Astonishment: comprehensible measures, intuitive consequences

Why is cybersecurity challenging?

Complexityunawareness, incompetence,quantity and diversityand neglicence

Asymmetry missing incentives because risks attacking vs. defending transferred to users (externality)

What was covered in this video?

Why is cybersecurity challenging?

Who is attacking and what are their motives?

What are common **threats** to data and systems?

https://canvas-project.eu

Cybersecurity Fundamentals

Dominik Herrmann, University of Bamberg